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STABILITY OF THE FLOW OF A ROTATING LIQUID FILM ALONG THE 

INSIDE SURFACE OF A CYLINDRICAL TUBE 

P. B. Begoulev and B. G. Froishteter U])C 532.517 

Under consideration is the problem of formation of Taylor vortices in a rotating 
film of a viscous incompressible fluid. 

Recently, film flow of a rotating liquid has become used on a wide scale in diverse 
equipment of the chemical industry (evaporators, heat exchangers, chemical reactors). Super- 
position of rotation on gravity flow of a film facilitates uniform spraying of the equipment 
surface, especially at low rates of liquid consumption, and appreciably intensifies heat and 
mass transfer processes [I-3]. The principal parameter determining this intensification is 
the stream whirl factor numerically equal to the tangent of the angle between the line of 
flow and the generatrix of the tube. It has been established [2] that with tan B ~ l a heat 
transfer coefficient more than twice as high as during gravity flow of the film is attainable. 
This intensification effect weakens as tan B decreases and, when tan B < 0.1, it becomes 
negligible. Therefore, selection of the optimum tube height for imparting rotation to a film 
is one of the more important problems in rational equipment design. As is well known, under 
such conditions a film unwhirls along the height, because of friction at a solid surface, and 
tan B decreases correspondingly. This decrease along the tube height is not monotonic, how- 
ever, and experiments have revealed [3] that at a certain spray density the tan B curve be- 
gins to break at some point, with the rate of change of tan B much higher along the initial 
segment than beyond this break point. This trend is illustrated graphically in Fig. I: Ex- 
perimental data are shown here obtained in another study [4] with flow of a water film along 
the surface of a tube 3"10 -2 m in diameter at a temperature of 19~ 

Exponential decreasing of tan ~ along the tube height has been established theoretically 
[3] and confirmed experimentally, as shown in Fig. I. As to the break point and the corre- 
sponding change of the attenuation rate (at B > $cr the whirl factor decreases approximately 
5.7 times faster), no satisfactory explanation of this phenomenon has yet been found. Mean- 
while, determination of the critical tan B corresponding to the break point on a tan B = g 
(z/R) curve is of great practical importance, because maximum intensification of the transfer 
processes can be expected to occur within the initial range. 

A break point on the tan B curve can be regarded as a consequence of a substantial change 
in the conditions of flow and, particularly, loss of stability so that a solution to the equa- 
tions of laminar flow would not reveal it. Such a phenomenon is generally characteristic of 
flow of a liquid in the field of centrifugal forces. In the case of flow of a liquid between 
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F i g .  1. Tangen t  o f  the  f i l m  w h i r l  a n g l e  as a 
f u n c t i o n  o f  the  r e l a t i v e  d i s t a n c e  f rom the  
tube  e n t r a n c e ,  a t  v a r i o u s  v a l u e s  o f  t he  Rey-  
n o l d s  number NRe ' z :  1) 1000;  2) 2000;  3) 3000;  
4) 4000; 5) 5000. 

rotating coaxial cylinders, e.g., it is caused by breakdown of the laminar mode and forma- 
tion of secondary streams in the form of toroidal vortices (Taylor vortices) [5]. It is 
reasonable to hypothesize that the appearance of vortices analogous to Taylor vortices in a 
rotating film can also be the cause of abrupt change of the transfer laws and, therefore, 
it seems worthwhile to analyze the stability of a rotating liquid film. 

We will consider the flow of a rotating film of a viscous incompressible fluid along 
the inside surface of a cylindrical tube. The film stream is assumed to be axisymmetric so 
that the components of velocity of quiescent flow will be functions of r and z only 

o O ( r , z ) , v  ~ v ~  o v ~ ( r , z ) ;  (1 )  Vr ~ Vr z .~ z ~ 

~ for a rotating film. where v 

Let us examine the stability of film flow (I) against small axisymmetric perturbations, 

letting 

v = v ~ + v'(r~exp{i(~z + P0}. (2) 

In deriving the equations of perturbed flow we will assume that the film thickness ~ is 
much smaller than the tube radius R (~ <<R) and that the wavelength of perturbed flow is of 
the order of the film thickness 6. This assumption makes it permissible to disregard in the 
equations of perturbed flow all terms proportional to 6/R which contain the radial component 
of velocity and derivatives, with respect to z, of components of the velocity profile across 
the mainstream. One cam then, without distorting the pattern of the phenomenon, replace 

o o corresponding to steady flow of a rota- expressions (1) with expressions for v~, v~, and v z 
ting film 

o O = 3 v  y - -  v ~ = 3 U  y - -  . vr = O, v~ -~ , ( 3 )  

I n  t h i s  c a s e  t h e  e q u a t i o n s  o f  p e r t u r b e d  f low in  d i m e n s i o n l e s s  v a r i a b l e s  can be w r i t t e n  as  

{ D z -  ~ - -  iy - -  3 ~  R ~ f  (~} (D 2 - -  a z) v; - -  3ia R~v~= v~, (4) 

{D 2 -  a 2 -  i? -7 3iaRez[ (9)} v$ = - -  Ta a2v~. (5) 

I n  t h e  d e r i v a t i o n  o f  Eqs.  ( 4 ) - ( 5 )  we have  r e p l a c e d  t he  q u a n t i t i e s  v ~ / r ,  ( d v $ / d r )  + 
(v~/r) with their mean over the film thickness values according to relations (3). 

As the boundary Conditions for Eqs. (4)-(5) we stipulate adhesion 

v~ = Dv~ = v$ = 0 (6) 

at the solid surface (y = 0) and continuity of normal stresses with zero shearing stresses 
at the free surface (y = l). These conditions are 

v~ = D2g = D v ~  = 0 (7) 

on the assumption that perturbations of the free surface can be disregarded for the solution 
of the problem of stability in the case of a rotating film. 

With the aid of the well-known solution to an analogous problem of stability in the 
case of a thin liquid film heated in the gravitational field [5], one can demonstrate that 
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TABLE I. ',alculation of Results 

V Re z a - - 7  T a  tgf3 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
300 
400 
500 
60{3 
700 
800 
9OO 

1000 
2000 
3000 
4000 
5000 

0,2051.10 t 
0,2051 
0,2050 
0,2047 
0,2044 
0,2036 
0,2029 
0,2014 
0,1993 
0, t955 
0,1891 
0,4716 
0,5821 
0,6633 
0,7291 
0,7857 
0,8354 
0,8803 
0,9208 
0,9589 
0,1337.10 ~ 
0,1429 
0,1581 
0,1708 

0 
0,196-102 
0,392 
0,587 
0,782 
0,974 
0, I16.103 
0,135 
0,153 
0,168 
0,181 
0,909 
0,170.104 
0,259 
0,357 
0,462 
0,575 
0,693 
0,817 
0,946 
0,245-10 ~ 
0,426 
0,629 
0,850 

0,691.103 
0,704 
0,741 
0,804 
0,892 
0,101.10~ 
0,114 
O, 131 
O, 149 
0,171 
0,195 
0,487 
0,826 
0,121.10~ 
0,162 
0,206 
0,252 
o,3o! 
0,351 
0,404 
0,101.106 
0,174 
0,255 
0,343 

1,5310 
0,7855 
0,5453 
0,4310 
0,3668 
0,3248 
0,2984 
0,2785 
0,2852 
0,2549 
0,2014 
0,1749 
0,1587 
0,1464 
0, I381 
0,1304 
0,1251 
0,1201 
0, I159 
0,0917 
0,0802 
0,0728 
0,0676 

boundary conditions (7) will be exact when NRe,z = 0. Inasmuch as the presence of an axial 
velocity does not alter the mechanism of loss of stability by a rotating film, it can be 
assumed that adopting the boundary conditions (7) will not significantly affect the final 
results also when NRe ' z =2e 0. 

Equations (4)-(5) with boundary conditions (6)-(7) constitute an eigenvalue :problem. 
The flow will be stable or unstable depending on whether the imaginary part of y is positive 
or negative. The condition Im y = 0 defines the neutral line. For given values of a and 
NRe,z , accordingly, it is necessary to find the real value of y with which the Taylor number 
will also be real. The minimum value of NTa with respect to a is its critical valu& for a 
film. 

The eigenyalue problem (5)-(7) is conveniently solved by the Galerkin method, with v r 
and v~ expanded into complete systems of functions satisfying the boundary conditions. There 

T T 

exist, in principle, many possible systems of functions into which v r and v~ can be expanded. 
In our case it is convenient to select for these functions simple polynomials in y 

= . ~ ,  T y +  y , = p~y(y--2) y~-' 
n = l  n = l  

just as in the Taylor problem of stability of flow between rotating coaxial cylinders. 

Coefficients an and Bn are determined by the requirement that the errors in Eqs. (5)-(6) 
be orthogonal to the respective functions into which v r and v~ have been expanded. In prac- 
tice in (8) only a finite number n = N terms are retained. This results in a system of N linear 
homogeneous equations for the series coefficients an and Bn- The necessary condition for 
the existence of a neutral solution is that the determinant of this system of equations be 
equal to zero. It has been demonstrated [7] that, as the Reynolds number NRe,z increases, 
more expansion functions are needed for a sufficiently accurate solution. Chandrasekhar has 
nevertheless shown [5] that a solution closely agreeing with experimental data can be obtained 
with the minimum number (N = I) of expansion functions, if f(y) in Eqs. (5)-(6) is replaced 
with its mean over the gap width value f(y) ~ I/3. Inserting into Eqs. (5)-(6) the expan- 

�9 ! 

szons (8) of v r and v~with N = 1, also adding the requirement that the error in Eq. (5) be 
orthogonal to u = y2(y2 _ (5/2)y + 3/2) and the error in Eq. (6) be orthogonal to v = y(y -- 
2), we obtain for al and BI the system of equations 

~ i  (A  - -  iC)  = ~l ( u v  ) , ~ (B - -  iD)  = - -  ~iTa ( u v  > a 2, ( 9 )  

where 

A = < D~uu  ) - -  2a  z < O ~ u  > + a ~ ( u u  > ; B = < DZvv  ) - -  a z < v v  > ; C = ( ~ @  
+ a Rez) ( ( D2uu ) - -  a 2 ( uu ) ) @ 3R%a ( u u  ) ; D = (7 + a Rez)  ( vv  ) . 
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TABLE 2. Comparison of Theoretical and Experimental 
Data 

l~e Z 

tg ~cr 
[3] 

Table 1 

I000 

0,410 

0,475 

2000 

0,290 

0,306 

3000 

O, 230 

O, 224 

4000 

O, 180 

O, 195 

5000 

O, 140 

O, 173 

The condition for nontriviality of system (9) yields 

T a = - -  ( A - - f C ) ( B I i D )  
a2( < uv > )2 ( lO)  

S i n c e  Ira X = 0 f o r  t h e  n e u t r a l  l i n e  and  NTa c a n  be  o n l y  r e a l ,  we d e t e r m i n e  y f r o m  t h e  
condition Im NTa = 0. 

Inserting the expression for X into expression (I0) and minimizing NTa with respect to 
parameter a (a > 0), we obtain the values of NTa , a, and y which correspond to the neutral 
line at various values of NRe,z (Table 1). A comparison of theoretical data (Table I) and 
experimental data on (tan Bcr at various values of NRe,z in Table 2 indicates an entirely 
satisfactory agreement between them. 

One can conclude from the preceding analysis that the assumptions made here do not dis- 
tort the physical pattern of the phenomenon but correctly reflect the quantitative as well 
as the qualitative aspects of the problem. 

NOTATION 

r, ~, z, cylindrical coordinates; v ~ velocity of main flow; v', velocity of perturbed 
flow; X is the wave number; p is the frequency; i = #~-I; 6 is the film thickness; R, tube 
radius; y = (R -- r)/~; U, mean axial velocity; V, mean tangential velocity; tan B = V/U; 
a = %~; X = p~2/w; ~, kinematic viscosity; NRe,z = U6/w; NRe,~ = V6/~; NTa = 3NRe~6/R; 
D ~ d/dy; f(y) = y -- �89 B, angle between the line of flow and the generatrix of the tube; 
and( >denotes averaging over the film thickness; t is time. 
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